پیش بینی بازده بازار سهام تهران با استفاده از ترکیب تجزیه موجک و شبکه عصبی فازی تطبیقی

Authors

  • علی رئوفی دانشجوی دکترای اقتصاد مالی، دانشگاه علامه طباطبائی
Abstract:

همواره مدل­سازی و پیش­بینی متغیرهای مالی یکی از موضوع‌های مورد علاقه و مهم برای اقتصاددانان بوده است. در این مقاله، ساختاری برای پیش­بینی سری­های زمانی ارایه شده است که با استفاده از رویکرد محاسبات نرم این امکان را فراهم می­آورد تا بتوان با دقت بیشتر مقادیر آینده یک سری زمانی را پیش­بینی کرد. در این روش، با استفاده از تجزیه موجک، نویز­های تصادفی داده­های ورودی شبکه عصبی فازی تطبیقی کاهش می­یابد و ازاین‌رو، این عمل باعث کاهش خطا و بهبود در پیش­بینی سری زمانی آشوبی موردنظر می‌شود. در این مقاله، روش یادشده با استفاده از سری بازده بورس اوراق بهادار تهران در بازه‌ زمانی 8/1/1390 تا 1/07/1395 مورد ارزیابی قرار گرفته که نتایج بیان‌کننده برتری روش پیشنهادی نسبت به سایر روش­هاست. همچنین معنا­داری اختلاف در پیش­بینی مدل­های مختلف با استفاده از آزمون MGN مورد بررسی قرار گرفت که نتایج نشان‌دهنده اختلاف معنا­دار در پیش­بینی مدل­های مختلف بود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی بازده آتی بازار سهام با استفاده از مدل‌های آریما، شبکه عصبی و نویززدایی موجک

موضوع شناخت و بررسی رفتار قیمت سهام، همواره یکی از موضوع‌های مهم و مورد توجه محافل علمی و سرمایه‌گذاری بوده است. اخیراً تعداد زیادی از پژوهشگران در پژوهش‌های خود بازار سهام را به عنوان یک سیستم پویای غیرخطی در نظر گرفته‌اند. در این پژوهش، تلاش شده است با استفاده از تبدیل موجک و شبکه عصبی مدلی ارایه شود که پیش بینی دقیق‌تر و با خطای کمتری از بازده شاخص بورس اوراق بهادار داشته باشد. در این مدل ترک...

full text

پیش بینی بازده آتی بازار سهام با استفاده از مدل های آریما، شبکه عصبی و نویززدایی موجک

موضوع شناخت و بررسی رفتار قیمت سهام، همواره یکی از موضوع های مهم و مورد توجه محافل علمی و سرمایه گذاری بوده است. اخیراً تعداد زیادی از پژوهشگران در پژوهش های خود بازار سهام را به عنوان یک سیستم پویای غیرخطی در نظر گرفته اند. در این پژوهش، تلاش شده است با استفاده از تبدیل موجک و شبکه عصبی مدلی ارایه شود که پیش بینی دقیق تر و با خطای کمتری از بازده شاخص بورس اوراق بهادار داشته باشد. در این مدل ترک...

full text

پیش بینی قیمت سهام با استفاده از شبکه عصبی فازی مبتنی برالگوریتم ژنتیک و مقایسه با شبکه عصبی فازی

In capital markets, stock price forecasting is affected by variety of factors such as political and economic condition and behavior of investors. Determining all effective factors and level of their effectiveness on stock market is very challenging even with technical and knowledge-based analysis by experts. Hence, investors have encountered challenge, doubt and fault in order to invest with mi...

full text

پیش بینی نوسانات بازده بازار با استفاده از مدل های ترکیبی گارچ ـ شبکه عصبی

در این پژوهش به مطالعه توان پیش بینی طیف وسیعی از مدل های ناهمسانی واریانس شرطی (G)ARCH طی یک دوره 126 ماهه بر روی بازده روزانه شاخص کل بورس تهران (TEDPIX) پرداخته شده است. نتایج بررسی این مدل ها تأیید کننده وجود سه ویژگی نوسان خوشه ای، عدم تقارن و نیز غیر خطی بودن، در سری زمانی بازده می باشد. سپس با هدف افزایش قدرت پیش بینی، این مدل ها با شبکه های عصبی مصنوعی ترکیب شده اند و نتایج حاصل از طرق ...

full text

پیش بینی سقوط بازار سهام با استفاده از شبکه های عصبی نگاشت خود سازمان ده

سقوط بازار پدیده­ای است که سبب از دست رفتن ثروت و دارایی سرمایه‎گذاران در بازۀ زمانی نسبتاً کوتاهی می­شود، از این رو تلاش برای پیش­بینی آن از اهمیت زیادی برای سرمایه­گذاران، سیاست‎گذاران، نهادهای مالی و دولت برخوردار است. بررسی اجمالی تئوری­ها و مدل‎های ارائه‎شدۀ پیش­بینی سقوط در بازار سهام نشان می­دهد میان پژوهشگران دربارۀ الگوهای مشاهده‎شدۀ متغیرها، مانند حجم معامله، بازده‎ها، نوسان‎پذیری، عوا...

full text

ترکیب شبکه های عصبی برای پیش بینی قیمت سهام

در این مقاله، یک مدل ابتکاری با ترکیب شبکه های عصبی مصنوعی (ANN) برای پیش بینی رفتار قیمت سهام پیشنهاد و اجرا می شود. این مدل ترکیبی، به صورت ساختار دو طبقه می باشد: شبکه های عصبی طبقه اول یا پیشگوهای پایه (Base Predictor) مسئول پیش بینی روزانه داده ها با ویژگی مختلف یک سهام می باشند و در طبقه دوم، شبکه دیگر، به عنوان ترکیب کننده پیش بینی نهایی را با بررسی و آنالیز اطلاعات پیشگوهای طبقه اول انج...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 23  issue 76

pages  107- 136

publication date 2018-10-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023